Polinomul Taylor - Ce este, definiție și concept

Polinomul Taylor este o aproximare polinomială a unei funcțiin ori derivabil la un anumit punct.

Cu alte cuvinte, polinomul Taylor este o sumă finită a derivatelor locale evaluate la un punct specific.

Matematic

Definim:

f (x): funcția de X.

f (x0): funcția deXla un punct specific x0. În mod oficial este scris:

F(n)(X):n-a derivată a funcției f (x).

Aplicații

Extinderea Taylor se aplică în general activelor și produselor financiare al căror preț este exprimat ca o funcție neliniară. De exemplu, prețul unui titlu de creanță pe termen scurt este o funcție neliniară care depinde de ratele dobânzii. Un alt exemplu ar fi opțiunile, în care atât factorii de risc, cât și rentabilitatea sunt funcții neliniare. Calculul duratei unei legături este un polinom Taylor de gradul I.

Exemplu polinomial Taylor

Vrem să găsim al doilea ordin al aproximării Taylor a funcției f (x) într-un punct x0=1.

1. Realizăm derivatele relevante ale funcției f (x).

În acest caz, ei ne cer până la ordinea a doua, așa că vom face prima și a doua derivată a funcției f (x):

  • Primul derivat:
  • A doua derivată:

2. Înlocuim x0= 1 în f (x), f '(x) și f' '(x):

3. Odată ce avem valoarea derivatelor la punctul x0= 1, îl substituim în aproximarea lui Taylor:

Reparăm puțin polinomul:

Verificarea valorilor

Aproximarea lui Taylor va fi adecvată cu cât este mai aproape de x0 fie valorile. Pentru a verifica acest lucru, înlocuim valori apropiate de x0 atât în ​​funcția originală, cât și în aproximarea Taylor de mai sus:

Când x0=1

Funcția originală:

Aproximare Taylor:

Când x0=1,05

Funcția originală:

Aproximare Taylor:

Când x0=1,10

Funcția originală:

Aproximare Taylor:

În primul caz când x0= 1, vedem că atât funcția originală, cât și aproximarea lui Taylor ne dau același rezultat. Acest lucru se datorează compoziției polinomului Taylor pe care am creat-o folosind derivatele locale. Acești derivați au fost evaluați la un punct specific, x0= 1, pentru a obține o valoare și a crea polinomul. Deci, cu cât este mai departe de acel punct particular, x0= 1, cu atât aproximarea va fi mai puțin adecvată pentru funcția inițială neliniară. În cazurile în care x0= 1,05 și x0= 1.10 există o diferență semnificativă între rezultatul funcției originale și aproximarea lui Taylor.

Dar … diferența este foarte mică, nu-i așa?

Reprezentarea polinomială a lui Taylor

Dacă extindem extremele (unde aproximarea se îndepărtează de x0=1):

La prima vedere poate părea nesemnificativ, dar atunci când lucrăm la grafic și facem aproximări, este foarte important să luăm în considerare cel puțin primele patru zecimale. Baza aproximărilor este precizia.

Posturi Populare

Ar trebui Spania să facă o restructurare a datoriilor?

Una dintre cele mai presante preocupări apărute odată cu criza financiară globală este restructurarea datoriei publice a Spaniei. Care depășește deja un miliard de euro. Confruntat cu o problemă atât de controversată, au existat multe voci care au vorbit despre acest aspect și nici nu au fost puține punctele de a citi mai mult…

Spania ar pierde 38,6 miliarde de euro dacă Grecia ar falimenta

Economia mondială urmărește de câțiva ani ce se întâmplă în Grecia și se întreabă care ar fi consecințele unei ieșiri grecești din euro. În termeni monetari, efectul asupra restului Europei ar fi devastator. Datoria grecească cu restul Europei crește la 319.000 milioane de euro, din care Citește mai mult…

Cele mai îndatorate țări din lume

În acest articol vă prezentăm un tabel cu cele 25 de țări care au cea mai mare datorie din lume. Rețineți că din cele 25 de pe listă 17 sunt europene. În valoarea totală a datoriei, puteți vedea, de asemenea, valoarea datoriei în procente față de PIB, deoarece pentru a compara solvabilitatea fiecăruia…

Paradis fiscal - Ce este, definiție și concept

✅ Paradis fiscal | Ce este, semnificație, concept și definiție. Un rezumat complet. Un paradis fiscal este o zonă geografică, în mod normal un stat, al cărui regim fiscal impune unele ...…