În această postare explicăm proprietățile distribuției t a Studentului.
Cu alte cuvinte, distribuția t este o distribuție de probabilitate care estimează valoarea mediei unui eșantion mic extras dintr-o populație care urmează o distribuție normală pentru care nu știm abaterea standard.
Articole recomandate: grade de libertate, grade de libertate (exemplu) și distribuție normală.
Poveste
William Sealy Gosset (1876-1937) în 1908 a avut nevoia să creeze o distribuție care să-l ajute cu calcule statistice privind berile marca Guinness din Irlanda. Întrucât rezultatele au trebuit să fie publicate folosind date private ale fabricii de bere pentru a demonstra aplicabilitatea noii sale distribuții, compania a interzis angajaților săi să publice informații confidențiale. Această limitare nu l-a împiedicat pe Gosset să-și publice concluziile sub pseudonimul de Student. Din acel moment, distribuția t este recunoscută ca distribuția t Student.
Proprietățile distribuției t a studentului
Proprietățile distribuției t ale studentului sunt următoarele:
- Este o distribuție simetrică. Valoarea mediei, medianei și modului coincid. Matematic,
- Este o distribuție unimodală. Valorile care sunt mai frecvente sau care sunt mai susceptibile de a apărea (modul) sunt în jurul valorii medii. Când ne îndepărtăm de medie, probabilitatea ca valorile să apară și frecvența lor scade.
- Dacă avem un eșantion de mărimea n, atunci vom avea o distribuție t cu (n-1) grade de libertate.
Cu alte cuvinte, distribuția va avea același număr de observații pe ambele părți ale valorii centrale.
- Funcția de densitate nu depinde de gradele de libertate pentru a fi simetrice.
- Reprezentarea grafică arată ca distribuția normală, adică este și în formă de clopot.
- Valoarea medie sau mijlocie este zero (0).
- Cu cât cresc gradele de libertate, cu atât distribuția t va fi mai asemănătoare cu distribuția normală.
Distribuție normală vs distribuție t
Distribuția t și distribuția normală diferă în principal deoarece distribuția t atribuie mai multe probabilități observațiilor extreme decât distribuția normală standard (varianță mai mare de 1). Cu alte cuvinte, distribuția t are cozi mai largi decât distribuția normală.